A Modified Support Vector Machine model for Credit Scoring
نویسندگان
چکیده
منابع مشابه
Orthogonal support vector machine for credit scoring
The most commonly used techniques for credit scoring is logistic regression, and more recent research has proposed that the support vector machine is a more effective method. However, both logistic regression and support vector machine suffers from curse of dimension. In this paper, we introduce a new way to address this problem which is defined as orthogonal dimension reduction. We discuss the...
متن کاملCredit scoring using the clustered support vector machine
This work investigates the practice of credit scoring and introduces the use of the clustered support vector machine (CSVM) for credit scorecard development. This recently designed algorithm addresses some of the limitations noted in the literature that is associated with traditional nonlinear support vector machine (SVM) based methods for classification. Specifically, it is well known that as ...
متن کاملSupport Vector Machines for Credit Scoring
Quantitative methods to assess the creditworthiness of the loan applicants are vital for the profitability and the transparency of the lending business. With the total loan volumes typical for traditional financial institutions, even the slightest improvement in credit scoring models can translate into substantial additional profit. Yet for the regulatory reasons and due to the potential model ...
متن کاملCredit rating with a monotonicity-constrained support vector machine model
Deciding whether borrowers can fulfill their obligations is a major issue for financial institutions, and while various credit rating models have been developed to help achieve this, they cannot reflect the domain knowledge of human experts. This paper proposes a new rating model based on a support vector machine with monotonicity constraints derived from the prior knowledge of financial expert...
متن کاملA Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting
Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2010
ISSN: 1875-6883
DOI: 10.2991/ijcis.2010.3.6.10